A-generators for Ideals in the Dickson Algebra
نویسنده
چکیده
The Dickson Algebra on q-variables is the algebra of invariants of the action of the mod-2 general linear group on a polynomial algebra in q-variables. We study the structure of certain ideals in this algebra as a module over the Steenrod Algebra A, and develop methods to determine which elements are hit by Steenrod operations. This allows us to display a very small set of A-generators for these ideals and show that the set is minimal in some cases.
منابع مشابه
Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal
Let $f : A rightarrow B$ be a ring homomorphism and $J$ an ideal of $B$. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $Abowtie^fJ$ to be $J$-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $Abowtie^fJ$, in special cases.
متن کاملFUZZY OBSTINATE IDEALS IN MV-ALGEBRAS
In this paper, we introduce the notion of fuzzy obstinate ideals in MV -algebras. Some properties of fuzzy obstinateideals are given. Not only we give some characterizations of fuzzy obstinate ideals, but also bring the extension theorem of fuzzy obstinate ideal of an MV -algebra A. We investigate the relationships between fuzzy obstinate ideals and the other fuzzy ideals of an MV -algebra. We ...
متن کاملLattice of weak hyper K-ideals of a hyper K-algebra
In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملThe Aluffi Algebra and Linearity Condition
The Aluffi algebra is an algebraic version of characteristic cycles in intersection theory which is an intermediate graded algebra between the symmetric algebra (naive blowup) and the Rees algebra (blowup). Let R be a commutative Noetherian ring and J ⊂I ideals of R. We say that J ⊂I satisfy linearity condition if the Aluffi algebra of I/J is isomorphic with the symmetric algebra. In this pa...
متن کامل